How Formal Methods Impels Discovery:

A Short History of an Air Traffic Management Project

Ricky W. Butler, George Hagen, Jeffrey M. Maddalon, César A. Mufioz, Anthony Narkawicz

NASA Langley Research Center

Hampton, VA 23681, USA
{r.w.butler, george.hagen, j.m.maddalon, c.a.munoz, anthony.narkawicz}@nasa.gov
Gilles Dowek

Ecole polytechnique and INRIA
LIX, Ecole polytechnique

91128 Palaiseau Cedex, France

gilles.dowek@polytechnique.fr

Abstract

In this paper we describe a process of algorithmic discovery that was driven by our goal of
achieving a complete, mechanically verified algorithm for conflict prevention bands for use in enroute
air traffic management. The algorithms were originally defined in the PVS specification language and
subsequently have been implemented in Java and C++. We do not present the proofs in this paper.
Instead, we describe the process of discovery and the key ideas that enabled the final formal proof of
correctness to be completed.

1 Introduction

The formal methods team at NASA Langley has developed air traffic separation algorithms for the last
10 years. Given the safety-critical nature of these algorithms, we have emphasized formal verification of
the correct operation of these algorithms. In February of 2008 Ricky Butler and Jeffrey Maddalon started
a project to develop and formally verify algorithms that compute conflict prevention bands for en-route
aircraft.

In air traffic management systems, a conflict prevention system surveys nearby aircraft and provides
ranges of maneuvers that avoid conflicts with these aircraft The maneuvers are typically constrained to
ones where only one parameter is varied at a time: track angles, vertical speeds, or ground speeds. Such
maneuvers are easy for pilots to fly and they also have the advantage that they can be presented in terms
of prevention bands. Prevention bands display the maneuvers that result in conflict within a specified
lookahead time as a function of one parameter. Without conflict prevention information, a pilot might
enter into a secondary conflict while seeking to solve a primary conflict or otherwise changing his flight
plan.

Avoiding potential conflicts involves analyzing possible maneuvers of the aircraft. These ranges of
guidance maneuvers are often referred to as conflict-prevention information. The National Aerospace
Laboratory (NLR) refers to their conflict prevention capability as Predictive Airborne Separation Assur-
ance System or Predictive ASAS [3]]. The NLR approach provides two sets of bands: near-term conflicts
(within 3 minutes) are shown in red, while intermediate-term conflicts (within 5 minutes) are shown in
amber as illustrated in Figure [II We did not directly analyze the NLR system because the algorithms
were not available to us.

When we began this project, we had no idea that this project would take almost two years to complete
and that four additional formal methods researchers would join our effort before we were done. This
project has been one of the most interesting and enjoyable projects that we have worked on in our careers.
The reason for this is manifold, but the following aspects of this project contributed to this interest and

{r.w.butler,george.hagen,j.m.maddalon,c.a.munoz,anthony.narkawicz}@nasa.gov
gilles.dowek@polytechnique.fr

A Short History of an Air Traffic Management Project R. W. Butler et al

30 60

360 90

—— 150
330

T~ 120
300

270 180

240 210

Figure 1: Compass Rose with Conflict Prevention Bands

enjoyment: (1) the work resulted in a very elegant algorithm that is implemented in Java and C++, (2)
the final algorithm was very different from our first ideas, (3) there were many, many discoveries that
were surprising. At some points in the project we were having daily insights that improved the algorithm
or a proof, (4) on the surface the problem looks simple, but looks can be deceiving and the problem is
actually very subtle with many special cases. After studying the problem for over a year, we developed
an algorithm and rigorously documented this algorithm in a NASA Technical Memorandum [8]. We
also formalized much of the mathematical development in the paper. We planned to follow up this paper
with another paper that documented a complete formal proof of this algorithm. Much to our surprise this
final formal proof step found some deficiencies in our algorithm. These deficiencies were repaired and a
formal proof in the Prototype Verification System (PVS) [9] was finally completed in November 2009.

In this paper we will present a brief history of this project and highlight how the goal of formally
verifying the algorithm in the PVS theorem prover pushed us to new discoveries. We are sure that many
of the discoveries would not have been made if we had taken a more traditional approach of constructing
algorithms and testing them until they worked.

2 Notation

We consider two aircraft, the ownship and the intruder aircraft, that are potentially in conflict in a 3-
dimensional airspace. The prevention bands algorithm discussed here is intended to be used as a tactical
conflict prevention system. Tactical refers to the use of state-based information, e.g,. initial position
and velocity, straight line trajectories, e.g., constant velocity vectors in an Euclidean airspace, and short
lookahead time (typically 5 to 10 minutes).

We use the following notations:

S, | 3D vector | Initial position of the ownship aircraft

v, | 3D vector | Initial velocity of the ownship aircraft

s; | 3D vector | Initial position of the traffic aircraft

v; | 3D vector | Initial velocity of the traffic aircraft

The components of each vector are scalar values, so they are represented without the bold-face font, for
example S, = (Sox, Soy, Soz). As a simplifying assumption, we regard the position and velocity vectors as
accurate and without error. For notational convenience, we use v> = v-v and we denote by gs(v) the

A Short History of an Air Traffic Management Project R. W. Butler et al

5=5, -

Figure 2: Translated Coordinate System

ground speed of v, i.e., the norm of the 2-dimensional projection of v:

gs(v) = y/vi+vi (1)

In the airspace system, the separation criteria are specified as a minimum horizontal separation D and
a minimum vertical separation H (typically, D is 5 nautical miles and H is 1000 feet). It is convenient to
develop the theory using a translated coordinate system. The relative position s is defined to be s = s, —s;
and relative velocity of the ownship with respect to the traffic aircraft is denoted by v. With these vectors
the traffic aircraft is at the center of the coordinate system and does not move. For example in the left
side of Figure[2] the blue (upper) point represents the ownship with its velocity vector and its avoidance
area (circle of diameter D around the aircraft). The magenta (lower) point represents the intruder aircraft.
The right side represents the same information in the translated coordinate system. In a 3-dimensional
airspace, the separation criteria defines a cylinder of radius D and half-height H around the traffic aircraft.
This cylinder is called the protected zone.

In Figure [2] the two aircraft are potentially in conflict because the half-line defined by the relative
velocity vector v intersects the protected area, meaning that in some future time the ownship will enter
the protected zone around the traffic. If this future time is within the lookahead time 7', the two aircraft
are said to be in conflict. Each point in the green (dashed) area represents a possible relative vector that
avoids the protected area. Each one of these vectors yields a new velocity vector for the ownship that
resolves the potential conflict.

3 The Start of the Project

We began our project by first surveying the literature for previous solutions. Hoekstra [4] describes in his
PhD dissertation the NLR algorithms with some diagrams [3]], but unfortunately did not provide much
detail about how the algorithms actually worked. We decided to develop our own track angle, ground

A Short History of an Air Traffic Management Project R. W. Butler et al

speed, and vertical speed algorithms. In this paper, we will only present the track bands. These are
the most challenging and interesting of the three and the other bands are computed and verified using
analogous methods. We adopted the NLR idea of introducing two parameters, 7., (typically 3 minutes)
and Typer (typically five minutes), which divide the set of conflicts based on their nearness (in time) to
a loss of separation. If a loss of separation will occur within 7,4, then the region is colored red. On
the other hand, if a loss of separation will occur after 7,.4, but before 7y, then the region is colored
amber, otherwise it is painted green.

We first recognized that each aircraft’s contribution to the prevention band is independent of all other
aircraft; thus, the problem neatly decomposes into two steps:

1. Solve the bands problem for the ownship relative to each other aircraft separately.
2. Merge all of the pairwise regions.

We also quickly realized that an iterative solution was possible for the first step. We already had a
formally proven, efficient algorithm available to us named CD3D that decides if a conflict occurs for
specific values of s,, v,, s;, and v;, and parameters D, H, and 7. More formally, CD3D determines whether
there exists a future time # where the aircraft positions s, +¢v, and s; +¢v; are within a horizontal distance
D of each other and where the aircraft are within vertical distance H of each other. In other words there
is a predicted loss of separation within the lookahead time. Therefore, one needs only to execute CD3D
iteratively, varying the track angle from O to 360° per traffic aircraft. By running different scenarios,
we determined that a step size of 0.1°would be adequate for ranges of up to 200 nautical miles. This
iterative approach may not scale well in airborne systems, where tactical separation assurance algorithms
will be typically run at frequencies of about 1Hz. Furthermore, this brute-force approach unnecessarily
consumes the much needed on-board computational resources .

4 Search For an Analytical Solution

To solve the prevention bands problem in an analytical way, it is useful to define separate horizontal and
vertical notions of conflict. In the relative coordinate system, we define

An horizontal conflict occurs if there exists a future time ¢ within the lookahead time 7T where the
aircraft are within horizontal distance D of each other, i.e.,

(sx+1ve) 2+ (sy+1vy)? < D% (2)

where s and v are, respectively, the relative position and the relative velocity of the ownship with respect
to the intruder aircraft.

A vertical conflict occurs if there exists a future time ¢ within the lookahead time T where the aircraft
are within horizontal distance H of each other, i.e.,

ls.4+1v;| < H. 3)

We say that two aircraft are in conflict if there is a time ¢ where they are in horizontal and vertical
conflict. Formally, we define the predicate conflict? as follows

conflict?(s,v) = JO0<t<T: (sx+tve)?+ (sy+1vy)? <D?and |s, +1v,| < H. “4)

A Short History of an Air Traffic Management Project R. W. Butler et al

4.1 Track Only Geometric Solution

For given vectors v, and v;, we need to find the track angles & such that the relative vector
Vo = (g5(Vo) cos 0 — viy, g5(V,) sina — viy, Voz — Viz), (5)

is not in conflict.

For simplicity, we decided to first solve the track bands problem without consideration of the finite
lookahead time. We also decided to ignore vertical speed considerations and look at the horizontal plane
only. The problem thus reduced to finding the tangent lines to the horizontal protection zone (in the
relative frame of reference) as a function of a. We begin with the observation that in order for a vector
to be tangent it must intersect the circle of the protection zone. In other words, we need solutions of

or equivalently
(s+1vy)? = D? (7)

Expanding we obtain a quadratic equation at> + bt 4+ ¢ = 0 with

a:Vaz
bZZSVa
c=s>—D?

The tangent lines are precisely those where the discriminant of this equation is zero. In other words,
where b? — 4ac = 0. But, expanding the dot products yield:

b* = 4[s,(wcos & — viy) +5y(@sina—vyy)]?

4ac = 4(®* —20(viycos @ +viysina) +v*)(s-s — D?)

The discriminant finally expands into a complex second-order polynomial in sin¢ and cosc. But to
solve for &, we need to eliminate the cos o using the equation

cosa =11—sin?a

The net result is an unbelievably complex fourth order polynomial in sin . Solving for o analytically
would require the use of the quartic formulas. Although these formulas are complicated, such a program
could probably be written in a day or two. But, how would we verify these solutions? After all, the
quartic equations involve the use of complex analysis. Therefore, we begin to look for simplifications.

After seeking simplifications of the formula above, we found a simplification of the discriminant that
had been used in the verification of the KB3D algorithm [6]:

(s-v)> —v*(s? —D?) =0 if and only if s- v = Redet(s,v), (8)

where € € {—1,+1}, det(s,v) = s -v, st = (—sy,5,), and R = VSzEDZ. The beauty of the final form

is that the equation is linear on v. The two solutions are captured in the two values of €. When we
instantiate vy in this formula, we end up with a quadratic equation in sin c.

IG]
VE24+F?

Using this approach, we were able to derive the following solutions for . If <1 then in

A Short History of an Air Traffic Management Project R. W. Butler et al

QO

@ (b) ©

Figure 3: Relationship of Encounter Geometry and Lookahead Time

some 27 range, we have

G
o) = asin <\/W> - atan(E,F),
G
Oh =T — asin (\/Em> — atan(E7F),

where
E = o(Resy—s,), F =—0(Resy+sy), G=v; (Res* —s),

Since E, F, and G are all functions of &, we have two pairs of ¢ and o or a total of four total angles.

These angles represent the angles where the track prevention band changes color, assuming no lookahead
|G|
. E2+F2
are adjacent (i.e., two s are equal). This result was formalized in the PVS theorem prover and we have

written a Java implementation of the algorithm.

time. In many cases, we have fewer unique angles, for instance when > 1 or when the regions

4.2 Solution with Lookahead Time

The solution presented so far only considers the 2-dimensional case with no lookahead time. Figure
illustrates three distinct cases that appear when lookahead is considered. Cases (a) and (c) were easy
to handle, but we realized case (b) was going to take some additional analysis. But we were quite
pleased with our new result and decided to present the result to our branch head and research director.
During the presentation a member of the team announced, “I think you can solve this problem without
trigonometry,” and he urged us to defer the use of trigonometry until the last possible moment. In other
words, he suggested that we solve for (v,) without expanding its components. Only after the appropriate
abstract solution vector is found, should the conversion to a track o« be made. This was a key idea
that had been used in the development of the KB3D algorithms, which resulted in very efficient and
elegant algebraic solutions [1]]. Indeed, we realized that the infinite lookahead problem was solvable by
a particular kind of KB3D resolutions called track lines and, for the case of track solutions, computed by
the function presented in Figure 4]

The function trk line returns the vector 0 when all track angles for the ownship yield a potential
conflict. Otherwise, the vector returned by this function is a velocity vector for the ownship that is tangent
to the 2-dimensional protected zone. Since €and tare +1, for given s, v,, and v; there are four possible
track line solutions.

The key to solve track bands with finite lookahead is to find where the projected lookahead time
intersects the protected zone. That is, plot where the relative position of the aircraft will be after 7' time
units in every possible direction given an unchanged ground speed. And find the intersection points with

A Short History of an Air Traffic Management Project

trk_line(s,v,,v;,€,1) : Vect2 =
LET u = tangent_line(s,é€),
a = u?,
b = uv;,
c=v:-v:IN
IF discriminant(a,2*b,c) > O THEN
LET k = root(a,2*b,c,1) IN
IF k > 0 THEN
ku+v;
ELSE
0
ENDIF
ELSE
0

ENDIF

Figure 4: Track Line Solutions

R. W. Butler et al

the protection zone. The function trk_circle, also available in KB3D, provides these solutions, which

are called track circles.

The function trk_circle returns the vector 0 when there are no track circle solutions, i.e., when the
lookahead time boundary ¢ and the protected zone do not intersect, or when there are an infinite number
of solutions. Otherwise, the vector returned by this function is a velocity vector for the ownship that
intersect the 2-dimensional protected zone at a time later than #. Since €and 1are +1, for given s, v,,
and v; there are four possible track circle solutions. The trk_line and trk_circle functions and all

of their subfunctions are fully developed and defined in [8].

We believe that the finite lookahead problem would have been intractable in the trigonometric ap-
proach pursued at first. This switch to a pure algebraic approach was fundamental to achieving the final

3D proof of the bands algorithm.

A Short History of an Air Traffic Management Project R. W. Butler et al

4.3 The Track Bands Algorithm

The idea of the algorithm is to first find the critical track vectors using our track_line and track_circle
functions. These critical vectors are

R,m = track line(s,v,,v;,,—1,—1),
R,,, = track_1line(s,v,,v;,—1 +1),

(8,Vo,Vi,+1,—1),
R,, =track_1line(s,v,,v;,+1,+1),

R,, =track line

C.m = track_circle(s,v,, Vv, Treq, —1),
C,p, =track_circle(s,V,,Vi, Treq, +1),
Cun = track circle(s,V,, Vi, Tynper,—1),
(S Vo, Vi, amber>+1)
(S vahtentry _1)7

C., = track_circle(s, Vo, Vi, fentry, +1),

C.p = track circle

C.n =track circle

Cun = track circle(s,V,, Vi, foyir, —1),

C,, =track_circle(s, Vo, Vi,lexir, +1).

Some of these vectors may be zero vectors in which case they are ignored. Next, find the corresponding
track angles (using atan) and sort this list of angles. To provide appropriate bounding, the angles 0
and 27 are added. Finally, use the conflict probe (such as CD3D) at an angle between each of the
critical angles to characterize the whole region (i.e., determine which color the region should be painted:
green, amber, or red). This procedure is iterated between the ownship and all traffic aircraft. Finally, the
resulting bands are merged to get the display in Figure

5 Formal Verification of Pairwise Prevention Bands Algorithms

The algorithms trk_line and trk_circle discussed in Section have been verified correct for
conflict resolution, i.e., they compute vectors that yield conflict free trajectories for the ownship, and
complete for track prevention bands, i.e., they compute all critical vectors were the track bands change
colors. These algorithms are slightly different from the original ones presented in [8]. Indeed, the algo-
rithms presented in that report, while still correct for conflict resolution, failed to compute all the critical
vectors. Therefore, those algorithms, which had been tested over 10,000 test cases, were incorrect. The
missing vectors were found during the formal verification process.

The general idea of the correctness proof of the prevention bands algorithms is simple. For a given
parameter of the ownship, e.g., track angle, we define a function Q4 : R — R, parametrized by s, v,,
and v,, that characterizes conflicts in the following way: Q. (o) < 0 if and only if conflict?(s,vy),
where v, is defined as in Formula[3]

Then, we prove that the critical vectors computed in Section .3 are complete, i.e., they are exactly
the zeros of the function €. Next, we prove that the function Q. is continuous. Therefore, by the
Intermediate Value theorem, we can deduce that any point in an open bands region, e.g., the mid-point,
determines the color of the whole band. This last step requires the existence of a conflict probe algorithm
that is correct and complete, which we have already developed and verified.

Since the functions that compute the critical vectors for ground speed are much simpler that for track
angle, we decided to start the formalization of that proof sketch with the case of 2-dimensional ground
speed bands with no lookahead time. In this case, the function Qgs that we needed to construct had to

A Short History of an Air Traffic Management Project R. W. Butler et al

characterize conflict?(s,vy), where

Ve = V. (9)

The following formula provided the needed relationship between horizontal conflict that does not
include a quantification over time:

horizontal conflict?(s,v) <= s-v < Rdet(v,s) < —s-V, (10)

where, R is defined as in Formula[8]

The function Qgs was constructed based on this theorem. The resulting function required the use
of if-then-else logic so the proof that it was continuous was tedious. After much effort, we were able
to prove in PVS that the ground-speed algorithms gs_line and gs_circle, which are analogous to
trk_line and trk_circle, were complete assuming no look-ahead time.

The lesson learned from this first attempt was that we needed a more abstract way of defining the
functions Qgg and Qg such that the complexity of the continuity proofs can be untangled from the
subtleties of the track and ground speed resolutions. With this in mind, we define a function Q: R" — R,
parametrized by s, v,, and v,, such that Qy = Q o vy and Qgg = Q o v;. The continuity of Q4 and
Qgs 18 a consequence of the continuity of €, which can be proved once and for all for all kinds of bands,
and the continuity of v, and vi. All this seems straightforward except that there are several technical
difficulties.

The function Q is closely related to the function that computes the minimum distance between two
aircraft. That function is, in general, noncontinuous for an infinite lookahead time. Interestingly, it is
continuous when a lookahead time is considered, but the general proof of this fact requires the use of
vector variant of the Heine-Cantor Theorem, i.e., if M is a compact metric space, then every continuous
function f : M — N, where N is a metric space, is uniformly continuous, which was not available in
the PVS NASA libraries. Furthermore, the minimum distance function may have flat areas. Therefore,
special attention has to be paid to the definition of Q to guarantee that the set of critical points is finite.
Otherwise, it cannot be proven that the critical vector algorithms are complete.

The next sections discuss the formal verification of the prevention bands algorithms with lookahead
time for both the 2-D and 3-D cases.

5.1 Verification of 2D Prevention Bands

In the 2-dimensional case, a direct definition of €2 is possible by using T of minimal horizontal separation
between two aircraft:

S-V
= ——. 11
7(s,v) ") (11)
From 7, we can define Q as follows:
Q(v) = (s+min(max(0,7(s,v)),T)v)> — D, (12)

where s is the relative distance between the ownship and the intruder aircraft.

The use of square distances in Formula [T2] avoids the use of the square root function. Since the
minimum and maximum of a continuous function is continuous, the use min and max is easier to handle
than the if-then-logic used our first attempt.

The function € is not defined when v is 0. Therefore, rather than using Q directly, we use the

A Short History of an Air Traffic Management Project R. W. Butler et al

function v — v2Q(v), which is defined everywhere, and we prove that it is continuous and that it correctly
characterizes conflicts, i.e., conflict?(s,v) if and only if v2Q(v) < 0.

The function v2Q(v) has an infinite number of zeroes in some special cases, e.g., when s is at the
border of the protected zone, i.e, when s = D?. In those, special cases, we use an alternative charac-
terization of conflicts that has the required properties. In August 2009, we completed the proof of the
2-dimensional track and ground speed bands with finite lookahead time. For additional technical details
on this formal development, we refer the reader to [7].

5.2 Verification of 3D Prevention Bands

The verification of the 3D conflict prevention bands algorithm is similar to that of the 2D algorithm.
Indeed, many of the geometrical concepts critical to the verification in the 2D case can be generalized
to the 3D case. However, these generalizations are typically nontrivial. The reason for this is that,
geometrically speaking, a circle (a 2D protected zone) is much easier to work with than a cylinder (a 3D
protected zone). The € function used in the verification of the 2D algorithm uses the horizontal time of
minimum separation T, which is easy to compute analytically. In contrast, the fact that a cylinder is not
a smooth surface indicates that a 3D generalization of the Q function will not be as simply defined.

Despite these geometric challenges, a concept was discovered that can be used to simplify geom-
etry problems involving distance on cylinders. This concept is the notion of a normalized cylindrical
length [2]):

24,2
uy +uy lut|
lulleyr = max(Y——, 25, (13)
This metric nicely reduces horizontal and vertical loss of separation into a single value. Indeed, if s is
the relative position vector of two aircraft, then [[s||cy; < 1 if and only if the aircraft are in 3D loss of
separation.

Using the cylindrical distance metric, the Q function can be defined in the 3D case as follows.

Q3p(v) = min [|s+1-V|[cy— 1, (14)
1€(0,T]
where S is the relative distance between the ownship and intruder aircraft. An immediate consequence
of this definition is that two aircraft are in conflict if and only if Q3p(v) < 0.

The correctness of the prevention bands algorithms relies on the fact that Q3 is a continuous function
of v, that the set of critical vectors, i.e., the zeroes of the function is finite, and that the critical vector
algorithms are complete.

For many functions, a proof of continuity follows immediately from definitions. In this case, function
Q3p is a minimum over the closed interval [0,7]. While standard methods from differentiable calculus
are often employed in similar problems, this function is a minimum of a non-differentiable function,
namely the cylindrical length. Its closed form involves several if-else statements and it would be difficult
to use directly in a proof of continuity. Thus, somewhat more abstract results from real analysis were
needed to be extended to vector analysis, e.g., the notion of limits, continuity, compactness, and finally
the Heine-Cantor Theorem.

As in the 2-dimensional case, the function Q3p may have flat areas and, consequently, in some special
cases, may have an infinite number of critical zeros. We carefully identified these special cases and then
used an alternative definition of Q3p. These special cases are extremely rare, indeed all the missing
critical vectors in the original algorithms presented in [8] were due to these special cases. Although they
are rare, dealing with them is necessary for the correctness of the algorithms. If one critical vector is

10

A Short History of an Air Traffic Management Project R. W. Butler et al

missing, the coloring of the bands will be potentially switch from red to green.

Finally, the PVS proof that the algorithms find all of the critical points is less abstract but more
tedious than the proof of continuity. It required the development of several PVS theories on the Q3p
function, which are general enough to be used in other state-based separation assurance algorithms. The
proof of the correctness of the 3-dimensional algorithms for track, ground speed, and vertical speed with
finite lookahead time was complete in December 2009.

6 Verification of the Merge Algorithm

Soon after the extension from purely geometric solutions to solutions that incorporate a lookahead time,
we realized that standard set operations (set union, set difference, etc.) could be used to implement both
the lookahead time and the merging of bands from a pairwise solution to a 1-to-n analysis.

Suppose we had a way to determine the set track angles that have a loss of separation within time 7',
denoted ¥ 7. Then since T,y < Tymper, we may define the colored bands of track angles in terms of this
new set:

gred = g<Tm,g

gamber = g< Tamber
ggreen = {OC|0O <a< 3600} — g<];1

- g< Trea
mber

This observation simplifies the analysis, because now we only need to analyze one set, ¢4.7. This opera-
tion only uses the set difference operation.

Next we observed that each aircraft’s contribution to the set 4.7 is independent of all other traffic;
thus, the problem neatly divides into a series of aircraft pairs: the ownship and each traffic aircraft. If
we use %g} to represent the set of track angles which cause a loss of separation within time 7" between
traffic aircraft i and the ownship o, then the set of track angles for all traffic is then be formed by

Yr=) 9%

ictraffic

This observation simplifies the analysis again, because now we only need to find the track angles which
cause a conflict between two aircraft, denoted by the set %g} Before we examine the set 542} in detail,
we introduce some mathematical modeling concepts.

At this point we realized that our solution would rely on a Java or C++ implementation of sets of
floating point numbers with their associated set operations. Common implement ions of sets in program-
ming languages do not include efficient ways to deal with ranges of floating point number; therefore, we
chose to implement our own. However, we realized that these algorithms would be non-trivial and would
require verification. Thus we performed a code-level verification of the algorithm to merge and subtract
bands.

Each band is represented by an interval describing its minimal and maximal values, with the set of
all bands of one color being an interval set. These interval sets were internally represented by arrays
of (ordered) intervals. Necessary properties for the implementation would be that the data structures
representing the bands both remained ordered and preserved the proper value ranges within a set of
bands.

For multiple aircraft, red bands for each ownship/intruder pair are merged together and the ownship
green bands are calculated as the difference of the red bands from a single all-inclusive band. Merging
combines overlapping bands as appropriate, with subtraction breaking larger bands into smaller ones.
The main complications in the proof resulted from boundary conditions and an ordering calculation

11

A Short History of an Air Traffic Management Project R. W. Butler et al

s = (-9.29 [nmi, ~12.16 [nmil, 0.00 [ft) norm = 15.30 [ami] Angle = 217.38 [deg], norm2D = 15.30 [nmi]
v = (127.49 [kts], 122.01 [kts], 0.00 [ft/m m = 176.47 [kis] Angle = 46.26 [deg]

50 = (-9.29 [nmil, ~12.16 [nmil, 0.00 [ft) 15.30 [nmi] Angle = 217.38 [deg] FL-0

Vo = (333.49 [kts], ~319.76 [kts], 0.00 [f
sif) = ¢ 0 [nmil, 0.00 [f

= 462.02 [kts] Angle = 133.80 [deg]
00 [nmi] Angle = 0.00 [deg]
1 = 487.44 [kts] Angle = 155.00 [deg]

— - 20

Figure 5: Screenshot of Track Prevention Band Display

where zero or a positive value represents an actual position in the array of intervals, but a negative value
represents a point between (or beyond) the intervals currently in the set.

One aspect the formal verification brought to the fore was the interpretation of intervals. It was
not possible to exclusively use closed or open intervals for both merging and difference operations.
Removing a closed interval, which includes the endpoints, leaves us with open intervals — everything
up to, but not including, these end points, and possible inconsistencies if we mixed the two. Removing
two adjacent open intervals could also lead to a left over point between them.

In the interest of having a consistent interface and eliminating redundant code, we decided to have
the results of both merge and difference be closed intervals. The inputs for union would likewise be
closed, and also the original interval set for difference. The interval set to be subtracted, however, would
be interpreted as open intervals. As mentioned above, this did lead to the possibility of introducing
artifacts of singleton intervals, where both endpoints have the same value. After consideration, however,
we realized these could be safely eliminated, as they are equivalent to a critical point at a local minimum
or maximum. Green singletons could be eliminated without introducing additional danger, and a red
singleton would represent a brush against (but not a cross into) the intruder’s protected zone.

7 Java and C++ Implementations

Ultimately these algorithms will be brought into large simulation environments where they will be eval-
uated for performance benefits (improvements to airspace capacity or aircraft efficiency). Some of these
simulation environments are in Java and some are in C++. Therefore a requirement of this project is
not only to develop an algorithm and verify it, but to also produce Java and C++ implementations of the
algorithm. The initial Java version of the algorithm was available in December 2008, see Figure[5] This
version successfully passed the limited test suite we developed. By the summer of 2009 we had a C++
version and the testing apparatus to verify exact agreement between the Java and C++ versions, along
with a regression suite of 100 test scenarios.

Since PVS is a specification language and contains non-computable functions, we deliberately re-
stricted our use of PVS to only the computable elements. In this way there is a direct translation of

12

A Short History of an Air Traffic Management Project R. W. Butler et al

PVS into Java or C++. We are currently developing a tool to automatically convert PVS specifications
into Java [S]], but the tool is not mature enough to handle the specification of these kinds of algorithms
in PVS. Even by converting by hand, we ran into certain problems. PVS libraries contain all the ap-
propriate vector operations (addition, dot-product, etc.). These libraries do not exist in standard Java or
C++. First we pursued the approach of finding a third-party library to offer these functions. However,
we found certain quirks in their implementation. One vector library took full advantage of the imperative
nature of the Java language, implementing functions on vectors which would change the parameters to
the vector. This results in efficient code, because object creation is not necessary, but does not closely
relate to the functional style of PVS. Because of these incompatibilities, we chose to implement our own
vector libraries. In a similar way, we developed our own set operations (union and intersection).

However even with this hand translation, we still do not have an behavioral replica of the PVS in
Java or C++. The most glaring difference is that Java and C++ use floating point numbers and PVS uses
actual real numbers. All of our verifications in PVS are accomplished with vectors defined over the real
numbers. This can be thought of as computation using infinite precision arithmetic. Clearly, our Java
and C++ implementations execute on less powerful machines than this. There are several places where
we must be especially careful:

e Calculation of quadratic discriminants. Since we are often computing tangents, the theoretical
value is zero, but the floating point answer can easily be small negative number near zero. We
would then miss a critical point.

e The possibility of the mid-point of a region being very close to zero.

Finally, another aspect related to this issue is that the data input into the algorithm is not precise. The
general rule-of-thumb is that the error in the input data will overwhelm any error introduced by floating
point computations. However, we would like to make a formal statement that includes both data and
computational errors.

8 Conclusions

In this paper, we have presented a short history of the development and formal verification of prevention
bands algorithms. The resulting track-angle, ground speed, and vertical speed bands algorithms are far
more simple than our earlier versions. The goal of completing a formal proof forced us to search for
simplifications in the algorithms and in the underlying mathematical theories. A key insight that enabled
the completion of this work, is that trigonometric analysis should be deferred until the latest possible
time. Although, the project took far longer than we expected, we are very pleased with the elegance and
efficiencies of the discovered algorithms.

References

[1] G.Dowek, A. Geser, and C. Muoz. Tactical conflict detection and resolution in a 3-D airspace. In Proceedings
of the 4th USA/Europe Air Traffic Management R&DSeminar, ATM 2001, Santa Fe, New Mexico, 2001. A
long version appears as report NASA/CR-2001-210853 ICASE Report No. 2001-7.

[2] Gilles Dowek and C. Mufioz. Conflict detection and resolution for 1,2,...,N aircraft. In Proceedings of the
7th AIAA Aviation, Technology, Integration, and Operations Conference, AIAA-2007-7737, Belfast, Northern
Ireland, 2007.

[3] J. Hoekstra, R. Ruigrok, R. van Gent, J. Visser, B. Gijsbers, M. Valenti, W. Heesbeen, B. Hilburn, J. Groe-
neweg, and F. Bussink. Overview of NLR free flight project 1997-1999. Technical Report NLR-CR-2000-227,
National Aerospace Laboratory (NLR), May 2000.

13

A Short History of an Air Traffic Management Project R. W. Butler et al

[4]

(5]

J. M. Hoekstra. Designing for safety: The free flight air traffic management concept. Technical Report 90-
806343-2-8, Technische Universiteir Delft, November 2001.

Leonard Lensink, César Mufioz, and Alwyn Goodloe. From verified models to verifiable code. Technical
Memorandum NASA/TM-2009-215943, NASA, Langley Research Center, Hampton VA 23681-2199, USA,
June 2009.

Jeffrey Maddalon, Ricky Butler, Alfons Geser, and César Mufoz. Formal verification of a conflict resolution
and recovery algorithm. Technical Report NASA/TP-2004-213015, NASA/Langley Research Center, Hamp-
ton VA 23681-2199, USA, April 2004.

Jeffrey Maddalon, Ricky Butler, César Muiioz, and Gilles Dowek. A mathematical analysis of conflict pre-

vention information. In Proceedings of the AIAA 9th Aviation, Technology, Integration, and Operations Con-
ference, AIAA-2009-6907, Hilton Head, South Carolina, USA, September 2009.

Jeffrey Maddalon, Ricky Butler, César Muifioz, and Gilles Dowek. A mathematical basis for the safety analysis
of conflict prevention algorithms. Technical Report TM-2009-215768, NASA Langley, June 2009.

S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak Kapur, editor, Proc.
11th Int. Conf. on Automated Deduction, volume 607 of Lecture Notes in Artificial Intelligence, pages 748—
752. Springer-Verlag, June 1992.

14

	Introduction
	Notation
	The Start of the Project
	Search For an Analytical Solution
	Track Only Geometric Solution
	Solution with Lookahead Time
	The Track Bands Algorithm

	Formal Verification of Pairwise Prevention Bands Algorithms
	Verification of 2D Prevention Bands
	Verification of 3D Prevention Bands

	Verification of the Merge Algorithm
	Java and C++ Implementations
	Conclusions

